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The phenomena accompanying the diffusion of superintense pulsed magnetic fields in metals are studied.
Solutions are obtained for the diffusion of a constant superintense magnetic field into a half-space with a
plane boundary and for the diffusion of an axial concentrated magnetic field. The limiting magnetic fields
which can be obtained in various experimental devices are found. The results are compared with
experiment.

Existing theories for the superheating of the skin layer of a metal are based on the assumption that the
conductivity is either independent of the temperature T [1] or has the dependence [2]

o=a,/(1+BD),

where B is the temperature coefficient of the resistance, and oy is the conductivity at T = 0. However, Joule heating
during the diffusion of a superintense magnetic field evaporates the metal. Since pure metals are elemental
(monatomic) substances, they do not dissociate in the evaporated state, and can have a nonvanishing conductivity only
as a result of ionization. During pulsed evaporation of a metal heated to its boiling temperature T4, however,
ionization of its vapor is prevented by the high density. An example of the evidence for the vanishing conductivity of a
highly dense evaporated metal is the "current pause” [3] during the electrical explosion of wires.

A study is therefore in order of the effect on magnetic field diffusion of the vanishing of the conductivity when a
metal is heated to its boiling temperature and evaporated.

1. Diffusion of a constant superintense magnetic field into a half-space. We consider the diffusion of a magnetic
field H(x,t) into the half-space x > 0 where H(x,0) = 0 and B(0,t) = H;, where Hj is the constant superintense magnetic
field.

We assume the conductivity of the metal in the half-space satisfies
o = const (Q <CQ.) c=0 (Q=0.)s (1.1

where Q(x,t) is the heat evolved per unit volume at cross section x before time, t, Q{(x,0) =0, and Q, is the heat
required to heat unit volume of the metal from its initial temperature to its boiling temperature and to completely
evaporate it. We thus assume that the absorption of Q4 is accompanied by a change in physical state: the metal
converts from a conductor to a dielectric.

If the magnetic field is large enough, the surface at which the conductivity vanishes (the phase-transition surface)
penetrates into the half-space according to x = £{t). At the phase-transition surface, the following condition is
satisfied:

QE n=20, (1.2)

The thermal conductivity of molten metals at all temperatures below the critical temperature [4] follows the
Wiedemann-Franz-Lorentz law

% = LoT (1.3)
where L = 2.44 - 107% W- ohm /deg? is the Lorentz constant.

In that part of the half-space in which the transition has not yet occurred, heat conduction is described by
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which takes into account Joule heating. For the region below the boiling point T,, the order of magnitude of the
quantities on the right-hand side of this last equation can be evaluated from (1.3):

KRS AYVE! 3H>2 LsT?
B 479?/? T ) ~TH <1

for 0 <510 ohm™!-m™!, T « Tk = 2600°C, and H > 10® a/m (1 MOe).

Heat conduction can therefore be neglected in this region during the diffusion of an intense magnetic field. In the
region in which the evaporation is occurring, the temperature remains constant until the metal is completely
evaporated; i.e., the first term on the right of (1.4) vanishes, and there is no heat conduction. Heat conduction can
therefore be neglected throughout the region in which the phase transition has not occurred; Eq. (1.4) becomes

3 t [ H\?
During the diffusion of the magnetic field, the displacement currents outside the conductors can also be
neglected, so
H §=H 0<e<5), (1.8)

According to (1.1), the conductivity is constant in that part of the half-space in which the transition has not
occurred, and the diffusion equation for the magnetic field is

oH o2H 1
-07—:7]2—(:”—2 (E<z<oo,’r|2zm), (17)

where 7* is the diffusion coefficient for the magnetic field, and p is the magnetic permeability.

The problem of the diffusion of a constant superintense magnetic field H, into a half-space with a conductivity
satisfying (1.1) thus reduces to system (1.5), (1.7).

We seek a solution of Eq. (1.5) in the form

H(z,t)= A+ BD (2—7131—/—9 (m (z):—é—ie-” dv, A, B:const). (1.8)
0

From the initial conditions for the magnetic field intensity and condition (1.6) at the phase-transition boundary, we
find s
Hy=4li — @&/ 2 V). (1.9)
Since this latter equation holds for all t, we have
£/ Vi= o= const. (1.10)
Equation (1.10) describes the motion of the phase-transition boundary. From (1.9) and (1.10), we find
A=Hy/ [l — @ (a/2y)]. (1.11)

Using solution (1.8) and (1.5), we find, after some simple calculations,

z2

Q= )= —’,t— Ay <7,,2—t> + @ (z) (El (2) :(§ et dt) s (1.12)

where ¢(x) is an arbitrary function. From (1.11), (1.12), the initial condition ¢(x) =0, and the condition at the phase-
transition boundary, we find
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Using the asymptotic expressions for the functions &(z) [5] and Ey(z) [6], we find the limiting magnetic field

H as z -

max
Hpoy = 204/ WP (2/ 20— o). {1.14)

If the field Hy reaches Hy,,x, its diffusion rate is infinite. This means that fields greater than Hy, o cannot be
maintained in any type of experimental apparatus with plane boundaries.

2. Diffusion of a constant, superintense, axial magnetic field. We assume that at time t = 0 the superintense
magnetic field H; is concentrated at the line r = 0, where r is a cylindrical coordinate. We consider the diffusion of the
field into a space with a conductivity satisfying condition (1.1). We also assume that some external apparatus holds the
magnetic field intensity constant at Hj at the line r = 0 during the diffusion.

Since the same physical processes occur in this case as during diffusion into the half-space, the problem
reduces to the solution of the following system of equations in cylindrical coordinates:

oH v 8 [/ 0H aQ 1 /9H\?
G-t F) F-+(F)  e<r<o, 2.1

where r = £(t) is the law of motion for the phase-transition boundary. The initial conditions are
Q(r0)=0, H(r, 0)=0; (2.2)
the boundary conditions are
Hir, ) =H, 0<r<8, Q& 0=0,. (2.3)
We seek a solution of the first equation in (2.1) in the form
H(r, ) = A + BE, (*/ &rt) (4B = const). (2.4)
1t follows from the second initial condition in (2.2) that A = 0, and it follows from boundary condition (2.3} that
Hy = BE; (82/ 4nt); (2.5)

then the law of motion of the phase-transition boundary is of the same form as for the magnetic field diffusion into the
half-space:

&/ Vi= o= const. (2.8)
From (2.5) and (2.6) we find
B = Hy /[ Ey («®/ 4nP), (2.7

The solution of the second equation in (2.1) becomes

2 2 ¢
o, t):—ﬁsa%—%i+wm (E2 (®) :S e Huy du), (2.8)
1

where ¥(r) is an arbitrary function. We see from initial condition (2.2) for Q that ¥(r) = 0; from (2.7), (2.8), and
boundary condition (2.3), we find an equation for the motion of the phase-transition boundary:

2 By (a2 21%) :
e O AT ) TR @9

Using asymptotic expressions for the functions E,(z) and E,(z) [6], we find the limiting magnetic fields:
Hpax = (20Qs / 1) (o = o). {2.10)

Equations (2.4) and (2.8) are used to solve the problem of the diffusion of a superintense magnetic field from an
aperture of finite radius R. For this purpose, we must specify at r = R and at inifial time t; the magnetic~field and
heat-evolution distributions given by Egs. (2.4) and (2.8), with an account of (2.3) and (2.9) and under the condition

131



H (R, ty) = Hy. For the limiting values Hy, ax» the introduction of the new initial condition is evidently inconsequential,
s0 (2.10) remains valid.
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3. Comparigon with experimental data. Figures 1 and 2 show the magnetic—field and heat-evolution distributions
with respect to depth for various velocities X = x/2nt1/ 2 of the phase-transition boundary during the diffusion of the
magnetic field into the half-space. The curves correspond to the values @/2n =0.1, 0.4, 1.0, as indicated in the
figures. The slopes of the distributions are seen to increase with increasing o. Presumably, therefore, at a
sufficiently large o the magnetic field diffuses into the metal at the velocity of the phase-transition boundary, and
hardly passes the latter.
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Figure 3 shows the dependence of the field propagation velocity on the quantity H* =Hy/ (WQ*/u)l/ 2 given by (1.14),
is approached, the magnetic field begins to propagate into the metal much more rapidly. This means that as the
magnetic field source increases in intensity, field leakage increases even more rapidly, and Hy, gy is not reached.
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Let us evaluate the limiting magnetic field which can be reached in an apparatus with plane metallic boundaries.
We evidently have

Qu~s(T,—To)+4r+gq, (8.1)

where s is the heat capacity, g is the heat of fusion, A is the latent heat of vaporization per unit volume of the metal,
and T, is the initial temperature. For copper, we have s ~ 6 cal/mole-deg and A ~ 73 keal/mole; at Ty ~ 2600° C we
find from (3.1) and (1.14) that Hy 55 ~ 2.9-10% a/m (3.6 MOe). We note that the values of @, and H, ., may be
sensitive to the vapor pressure at the phase-transition boundary.

The magnetic pressure Py, in the region at which the phase-transition has occurred is zero, since it is a
consequence of ponderomotive forces:

x
[}
Py (=, l)=p.SI~I(x, 1)% dz.
0
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In experiments in cavity and coaxial magnetic~compression generators [7—10], magnetic fields up toc 1.6 MOe
have been achieved, regardless of the linear dimensions, the initial magnetic fields and currents, or the compression
rates. In one case, afield of 2.6 MOe was reported [11].
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Figures 4 and 5 show the magnetic-field and heat-evolution distributions with respect to depth for various
transition-boundary velocities during the diffusion of a concentrated axial magnetic field held constant at a superintense
level. The curves are seen to have a greater slope than in the case of field diffusion into a half-space.
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Figure 6 shows the dependence of the transition-boundary velocity on the magnetic field. Using (3.1) and (2.10)
for the limiting magnetic field intensity, we have the following for copper shells:

Hpypas~ 5.4 - 108 A/m (6.4 MOe) .

Magnetic fields up to 1.6 MOe have been produced experimentally through the discharge of a capacitor battery
into a single-turn solenoid of copper, bronze, or hardened steel [12]. In this case, however, the solenoid was fitted
with a planar radial gap through which the magnetic field entered. According to (2.10) the magnetic field in the gap,
and thus that in the solenoid, cannot exceed 3 MOe; this is close to the experimentally observed value.

The agreement between the limiting field intensities in solenoids of various materials having initial
conductivities differing by a factor of at least ten can be explained by the fact that, according to (1.14) and (2.10), the
limiting magnetic field depends not on the conductivity but on the heat of vaporization Q,, which is roughly the same
for the materials used. In axially symmetric magnetic-compression generators, it is a simple matter to produce

magnetic fields up to 4—5 MOe [9, 13—-15], close to the value given by (2.10).
Only in exceptional experiments can magnetic fields of 14—25 MOe be produced {7, 8, 16].
In contrast with these systems, in an axially symmetric magnetic-compression generator high pressures may

arise in the region in which the phase transition has occurred and at the phase-transition boundary, because of shell
compression. Let us evaluate the pressure P which arises in an ideally incompressible shell of density p. We are
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primarily interested in the pressure in the region which has undergone the phase transition and at its boundaries,
where there are no volume ponderomotive forces. In this region the hydrodynamic equations for an incompressible
liquid are

orv dv v 1 épP

=0 w ey T (3-2)

where r is a cylindrical coordinate.

It has been established experimentally [9, 16] that the inner boundary of the shell moves at a constant velocity
vy, for nearly the entire time interval until it stops completely; then we have rp = ry — vit, where rj and rp are the
initial and instantaneous radii, respectively, of the inner boundary of the shell. Since the inner boundary of the shell is
a free surface, we have P (rp, t) = 0.

Under these conditions the solution of system (3.2) is

P = pvllnr/ry - (1 — rp?/ 1]

For copper, we have p = 8.9 - 10° kg/m®; at v;, = 3000 m/sec and rp,/r ~ 0.5, we find from this equation that P = 800
kbar, considerably above the critical pressures.

It follows that in an axially symmetric magnetic-compression generator, the phase-transition boundary stops
after it reaches a depth at which the pressure is equal to the critical pressure; if the pressure continues to increase,
this boundary starts to move in the opposite direction. Presumably, therefore, as the magnetic field intensity
increases, the depth to which it diffuses increases; however, there is a simultaneous increase in the pressure near the
phase-transition boundary, so the magnetic field may ultimately exceed the estimate in (2.10).

Experimental studies confirm this assumption. For roughly identical geometric and energetic conditions, H, ..
values of 2—3 MOe [16], 3.7 MOe [15], and 14.3 MOe [16] have been obtained at initial magnetic fields of 25, 33, and 90
kOe, respectively.

A field of Hy, 55 ~ 25 MOe has been reported at vy, ~ 10 — 20 km/sec [7, 8]. Inthis case the initial magnetic field,
produced by a solenoidal magnetic-compression generator, was apparently greater than 90 kOe.
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